CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of …

YS Bahn, P Sundstrom - Journal of bacteriology, 2001 - Am Soc Microbiol
YS Bahn, P Sundstrom
Journal of bacteriology, 2001Am Soc Microbiol
In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen
Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant
with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1).
Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha
transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha
transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of …
Abstract
In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains withCAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in thecap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles ofCAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficientcap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.
American Society for Microbiology