Recently published - More

Abstract

Accumulating evidence suggests that glioma stem cells (GSCs) are important therapeutic targets in glioblastoma (GBM). In this study, we identified NIMA-related kinase 2 (NEK2) as a functional binding protein of enhancer of zeste homolog 2 (EZH2) that plays a critical role in the posttranslational regulation of EZH2 protein in GSCs. NEK2 was among the most differentially expressed kinase-encoding genes in GSC-containing cultures (glioma spheres), and it was required for in vitro clonogenicity, in vivo tumor propagation, and radioresistance. Mechanistically, the formation of a protein complex comprising NEK2 and EZH2 in glioma spheres phosphorylated and then protected EZH2 from ubiquitination-dependent protein degradation in a NEK2 kinase activity–dependent manner. Clinically, NEK2 expression in patients with glioma was closely associated with EZH2 expression and correlated with a poor prognosis. NEK2 expression was also substantially elevated in recurrent tumors after therapeutic failure compared with primary untreated tumors in matched GBM patients. We designed a NEK2 kinase inhibitor, compound 3a (CMP3a), which efficiently attenuated GBM growth in a mouse model and exhibited a synergistic effect with radiotherapy. These data demonstrate a key role for NEK2 in maintaining GSCs in GBM by stabilizing the EZH2 protein and introduce the small-molecule inhibitor CMP3a as a potential therapeutic agent for GBM.

Authors

Jia Wang, Peng Cheng, Marat S. Pavlyukov, Hai Yu, Zhuo Zhang, Sung-Hak Kim, Mutsuko Minata, Ahmed Mohyeldin, Wanfu Xie, Dongquan Chen, Violaine Goidts, Brendan Frett, Wenhao Hu, Hongyu Li, Yong Jae Shin, Yeri Lee, Do-Hyun Nam, Harley I. Kornblum, Maode Wang, Ichiro Nakano

×

Abstract

Lesions and neurologic disability in inflammatory CNS diseases such as multiple sclerosis (MS) result from the translocation of leukocytes and humoral factors from the vasculature, first across the endothelial blood-brain barrier (BBB) and then across the astrocytic glia limitans (GL). Factors secreted by reactive astrocytes open the BBB by disrupting endothelial tight junctions (TJs), but the mechanisms that control access across the GL are unknown. Here, we report that in inflammatory lesions, a second barrier composed of reactive astrocyte TJs of claudin 1 (CLDN1), CLDN4, and junctional adhesion molecule A (JAM-A) subunits is induced at the GL. In a human coculture model, CLDN4-deficient astrocytes were unable to control lymphocyte segregation. In models of CNS inflammation and MS, mice with astrocyte-specific Cldn4 deletion displayed exacerbated leukocyte and humoral infiltration, neuropathology, motor disability, and mortality. These findings identify a second inducible barrier to CNS entry at the GL. This barrier may be therapeutically targetable in inflammatory CNS disease.

Authors

Sam Horng, Anthony Therattil, Sarah Moyon, Alexandra Gordon, Karla Kim, Azeb Tadesse Argaw, Yuko Hara, John N. Mariani, Setsu Sawai, Per Flodby, Edward D. Crandall, Zea Borok, Michael V. Sofroniew, Candice Chapouly, Gareth R. John

×

Abstract

Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.

Authors

Anna K. Kopec, Sara R. Abrahams, Sherry Thornton, Joseph S. Palumbo, Eric S. Mullins, Senad Divanovic, Hartmut Weiler, A. Phillip Owens III, Nigel Mackman, Ashley Goss, Joanne van Ryn, James P. Luyendyk, Matthew J. Flick

×

Abstract

Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO–activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor–induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.

Authors

Simona Pace, Carlo Pergola, Friederike Dehm, Antonietta Rossi, Jana Gerstmeier, Fabiana Troisi, Helmut Pein, Anja M. Schaible, Christina Weinigel, Silke Rummler, Hinnak Northoff, Stefan Laufer, Thorsten J. Maier, Olof Rådmark, Bengt Samuelsson, Andreas Koeberle, Lidia Sautebin, Oliver Werz

×

Abstract

Adoptive transfer of T cells engineered to express a hepatitis B virus–specific (HBV-specific) T cell receptor (TCR) may supplement HBV-specific immune responses in chronic HBV patients and facilitate HBV control. However, the risk of triggering unrestrained proliferation of permanently engineered T cells raises safety concerns that have hampered testing of this approach in patients. The aim of the present study was to generate T cells that transiently express HBV-specific TCRs using mRNA electroporation and to assess their antiviral and pathogenetic activity in vitro and in HBV-infected human liver chimeric mice. We assessed virological and gene-expression changes using quantitative reverse-transcriptase PCR (qRT-PCR), immunofluorescence, and Luminex technology. HBV-specific T cells lysed HBV-producing hepatoma cells in vitro. In vivo, 3 injections of HBV-specific T cells caused progressive viremia reduction within 12 days of treatment in animals reconstituted with haplotype-matched hepatocytes, whereas viremia remained stable in mice receiving irrelevant T cells redirected toward hepatitis C virus–specific TCRs. Notably, increases in alanine aminotransferase levels, apoptotic markers, and human inflammatory cytokines returned to pretreatment levels within 9 days after the last injection. T cell transfer did not trigger inflammation in uninfected mice. These data support the feasibility of using mRNA electroporation to engineer HBV TCR–redirected T cells in patients with chronic HBV infection.

Authors

Janine Kah, Sarene Koh, Tassilo Volz, Erica Ceccarello, Lena Allweiss, Marc Lütgehetmann, Antonio Bertoletti, Maura Dandri

×

Abstract

Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2–associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

Authors

Xi Fang, Julius Bogomolovas, Tongbin Wu, Wei Zhang, Canzhao Liu, Jennifer Veevers, Matthew J. Stroud, Zhiyuan Zhang, Xiaolong Ma, Yongxin Mu, Dieu-Hung Lao, Nancy D. Dalton, Yusu Gu, Celine Wang, Michael Wang, Yan Liang, Stephan Lange, Kunfu Ouyang, Kirk L. Peterson, Sylvia M. Evans, Ju Chen

×

Abstract

Leukotrienes are proinflammatory lipid mediators that have been shown to be upregulated in several diseases, including asthma, aspirin-exacerbated respiratory disease (AERD), inflammatory bowel disease, and acute respiratory distress syndrome. Leukotrienes have been explored as therapeutic targets for these diseases and others; however, leukotriene inhibitors have had limited success in the clinic. There are noted differences in the incidence of leukotriene-mediated diseases in males and females, but sex as a factor in the response to leukotriene inhibitors has not been fully explored. In this issue of the JCI, Pace and colleagues present evidence that there are sex-specific differences in the effectiveness of certain leukotriene inhibitors and link the differences in response to the presence of androgens. The results of this study indicate that sex needs to be taken into consideration in the future evaluation of leukotriene inhibitors to treat disease.

Authors

Lewis J. Smith

×

Abstract

The blood brain barrier (BBB) and the glia limitans serve to prevent the migration of cells and other large molecules from the blood into the CNS. Neuroinflammatory diseases are characterized by disruption of the BBB and increased leukocyte infiltration into the CNS. In this issue of the JCI, Horng and colleagues demonstrate that astrocytes of the glia limitans induce tight junction formation in response to inflammatory cues, thereby tightening the border to limit the number of activated T cells infiltrating the CNS. Moreover, preventing the formation of this inducible barrier in mice increased disease severity in models of neuroinflammation. Together, the results of this study indicate that the inducible barrier of the glia limitans should be further explored as a therapeutic target.

Authors

Francisco J. Quintana

×

Abstract

Proteinopathies are characterized by the accumulation of misfolded proteins, which ultimately interfere with normal cell function. While neurological diseases, such as Huntington disease and Alzheimer disease, are well-characterized proteinopathies, cardiac diseases have recently been associated with alterations in proteostasis. In this issue of the JCI, Fang and colleagues demonstrate that mice with cardiac-specific deficiency of the co-chaperone protein BCL2-associated athanogene 3 (BAG3) develop dilated cardiomyopathy that is associated with a destabilization of small HSPs as the result of a disrupted interaction between BAG3 and HSP70. Together, the results of this study suggest that strategies to upregulate BAG3 during cardiac dysfunction may be beneficial.

Authors

Wataru Mizushima, Junichi Sadoshima

×


Advertisement

June 2017

127 7 cover

June 2017 Issue

On the cover:
Light-sensitive ligands restore visual function

Laura Laprell et al. characterize diethylamino-azo-diethylamino (DAD), a third-generation photoswitch that is capable of photosensitizing bipolar cells to restore visual function in blind mice. The cover shows the DAD photoswitch in light-activated cis configuration within an eye. Image credit: Laura Laprell.

×
Jci tm 2017 07

July 2017 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Transplantation

Series edited by Scott Palmer and Jonathan S. Serody

Organ and tissue transplantation are frequently life-extending procedures for patients with end-stage organ disease or hematological malignancies; however, the success of transplantation of organs and tissues to a recipient from a genetically non-identical donor is limited by immune-mediated complications, including rejection, graft dysfunction, graft-versus-host disease, and the side effects of preventing rejection. Despite over 100 years of research in this area, we are just now beginning to develop an in-depth understanding of the immune mechanisms that determine the success of allotransplantation. A detailed understanding of transplantation immunology will allow for better selection of donor/recipient pairs, the development of novel therapeutic strategies, and, ultimately, better outcomes. Reviews in this series explore the role of cytokines in both acute and chronic graft-versus-host disease; the effects of sterile inflammation, danger signals, and the inflammasome in solid organ transplantation; the mechanisms of humoral and cellular rejection; cell-based therapies to combat rejection and transplantation-associated infections; and the effects of both host-intrinsic and -extrinsic factors in transplantation outcomes.

×